nannyml.performance_estimation.base module
Module containing base classes for performance estimation.
- class nannyml.performance_estimation.base.PerformanceEstimator(model_metadata: ModelMetadata, features: Optional[List[str]] = None, chunk_size: Optional[int] = None, chunk_number: Optional[int] = None, chunk_period: Optional[str] = None, chunker: Optional[Chunker] = None)[source]
Bases:
ABC
Abstract class for performance estimation.
Creates a new instance of a performance estimator.
- Parameters
model_metadata (ModelMetadata) – Metadata telling the DriftCalculator what columns are required for drift calculation.
features (List[str]) – An optional list of feature column names. When set only these columns will be included in the drift calculation. If not set it will default to all feature column names.
chunk_size (int) – Splits the data into chunks containing chunks_size observations. Only one of chunk_size, chunk_number or chunk_period should be given.
chunk_number (int) – Splits the data into chunk_number pieces. Only one of chunk_size, chunk_number or chunk_period should be given.
chunk_period (str) – Splits the data according to the given period. Only one of chunk_size, chunk_number or chunk_period should be given.
chunker (Chunker) – The Chunker used to split the data sets into a lists of chunks.
- estimate(data: DataFrame) PerformanceEstimatorResult [source]
Estimate performance given a data set lacking ground truth.
- fit(reference_data: DataFrame) PerformanceEstimator [source]
Fits the data on a reference data set.
- class nannyml.performance_estimation.base.PerformanceEstimatorResult(estimated_data: DataFrame, model_metadata: ModelMetadata)[source]
Bases:
ABC
Contains performance estimation results and provides additional functionality on them.
Creates a new DriftResult instance.
- Parameters
estimated_data (pd.DataFrame) – The results of the
estimate()
call.model_metadata (ModelMetadata) – The metadata describing the monitored model.