nannyml.config module

class nannyml.config.CalculatorConfig(*, type: str, name: Optional[str] = None, enabled: Optional[bool] = True, outputs: Optional[List[WriterConfig]] = None, store: Optional[StoreConfig] = None, params: Dict[str, Any])[source]

Bases: BaseModel

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

enabled: Optional[bool]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

name: Optional[str]
outputs: Optional[List[WriterConfig]]
params: Dict[str, Any]
store: Optional[StoreConfig]
type: str
class nannyml.config.Config(*, input: Optional[InputConfig] = None, calculators: List[CalculatorConfig], scheduling: Optional[SchedulingConfig] = None, ignore_errors: Optional[bool] = None)[source]

Bases: BaseModel

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

calculators: List[CalculatorConfig]
ignore_errors: Optional[bool]
input: Optional[InputConfig]
classmethod load(config_path: Optional[str] = None)[source]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod parse(config: str)[source]
scheduling: Optional[SchedulingConfig]
class nannyml.config.CronSchedulingConfig(*, crontab: str)[source]

Bases: BaseModel

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

crontab: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class nannyml.config.InputConfig(*, reference_data: InputDataConfig, analysis_data: InputDataConfig, target_data: Optional[TargetDataConfig] = None)[source]

Bases: BaseModel

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

analysis_data: InputDataConfig
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

reference_data: InputDataConfig
target_data: Optional[TargetDataConfig]
class nannyml.config.InputDataConfig(*, path: str, credentials: Optional[Dict[str, Any]] = None, read_args: Optional[Dict[str, Any]] = None)[source]

Bases: BaseModel

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

credentials: Optional[Dict[str, Any]]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

path: str
read_args: Optional[Dict[str, Any]]
class nannyml.config.IntervalSchedulingConfig(*, weeks: Optional[int] = None, days: Optional[int] = None, hours: Optional[int] = None, minutes: Optional[int] = None)[source]

Bases: BaseModel

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

days: Optional[int]
hours: Optional[int]
minutes: Optional[int]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

weeks: Optional[int]
class nannyml.config.SchedulingConfig(*, interval: Optional[IntervalSchedulingConfig] = None, cron: Optional[CronSchedulingConfig] = None)[source]

Bases: BaseModel

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

cron: Optional[CronSchedulingConfig]
interval: Optional[IntervalSchedulingConfig]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class nannyml.config.StoreConfig(*, path: str, credentials: Optional[Dict[str, Any]] = None, filename: Optional[str] = None, invalidate: bool = False)[source]

Bases: BaseModel

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

credentials: Optional[Dict[str, Any]]
filename: Optional[str]
invalidate: bool
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

path: str
class nannyml.config.TargetDataConfig(*, path: str, credentials: Optional[Dict[str, Any]] = None, read_args: Optional[Dict[str, Any]] = None, join_column: Optional[str] = None)[source]

Bases: InputDataConfig

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

join_column: Optional[str]
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class nannyml.config.WriterConfig(*, type: str, params: Optional[Dict[str, Any]] = None, write_args: Optional[Dict[str, Any]] = None)[source]

Bases: BaseModel

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

params: Optional[Dict[str, Any]]
type: str
write_args: Optional[Dict[str, Any]]
nannyml.config.get_config_path(custom_config_path: Optional[str] = None) Path[source]