nannyml.config module
- class nannyml.config.CalculatorConfig(*, type: str, name: Optional[str] = None, enabled: Optional[bool] = True, outputs: Optional[List[WriterConfig]] = None, store: Optional[StoreConfig] = None, params: Dict[str, Any])[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- enabled: Optional[bool]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- name: Optional[str]
- outputs: Optional[List[WriterConfig]]
- params: Dict[str, Any]
- store: Optional[StoreConfig]
- type: str
- class nannyml.config.Config(*, input: Optional[InputConfig] = None, calculators: List[CalculatorConfig], scheduling: Optional[SchedulingConfig] = None, ignore_errors: Optional[bool] = None)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- calculators: List[CalculatorConfig]
- ignore_errors: Optional[bool]
- input: Optional[InputConfig]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- scheduling: Optional[SchedulingConfig]
- class nannyml.config.CronSchedulingConfig(*, crontab: str)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- crontab: str
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class nannyml.config.InputConfig(*, reference_data: InputDataConfig, analysis_data: InputDataConfig, target_data: Optional[TargetDataConfig] = None)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- analysis_data: InputDataConfig
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- reference_data: InputDataConfig
- target_data: Optional[TargetDataConfig]
- class nannyml.config.InputDataConfig(*, path: str, credentials: Optional[Dict[str, Any]] = None, read_args: Optional[Dict[str, Any]] = None)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- credentials: Optional[Dict[str, Any]]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- path: str
- read_args: Optional[Dict[str, Any]]
- class nannyml.config.IntervalSchedulingConfig(*, weeks: Optional[int] = None, days: Optional[int] = None, hours: Optional[int] = None, minutes: Optional[int] = None)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- days: Optional[int]
- hours: Optional[int]
- minutes: Optional[int]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- weeks: Optional[int]
- class nannyml.config.SchedulingConfig(*, interval: Optional[IntervalSchedulingConfig] = None, cron: Optional[CronSchedulingConfig] = None)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- cron: Optional[CronSchedulingConfig]
- interval: Optional[IntervalSchedulingConfig]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class nannyml.config.StoreConfig(*, path: str, credentials: Optional[Dict[str, Any]] = None, filename: Optional[str] = None, invalidate: bool = False)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- credentials: Optional[Dict[str, Any]]
- filename: Optional[str]
- invalidate: bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- path: str
- class nannyml.config.TargetDataConfig(*, path: str, credentials: Optional[Dict[str, Any]] = None, read_args: Optional[Dict[str, Any]] = None, join_column: Optional[str] = None)[source]
Bases:
InputDataConfig
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- join_column: Optional[str]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class nannyml.config.WriterConfig(*, type: str, params: Optional[Dict[str, Any]] = None, write_args: Optional[Dict[str, Any]] = None)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- params: Optional[Dict[str, Any]]
- type: str
- write_args: Optional[Dict[str, Any]]