Source code for nannyml.performance_calculation.metrics.multiclass_classification

#  Author:   Niels Nuyttens  <niels@nannyml.com>
#  #
#  License: Apache Software License 2.0

#  Author:   Niels Nuyttens  <niels@nannyml.com>
#
#  License: Apache Software License 2.0

"""Module containing metric utilities and implementations."""
from typing import Dict, List, Optional, Tuple, Union  # noqa: TYP001

import numpy as np
import pandas as pd
from sklearn.metrics import (
    accuracy_score,
    f1_score,
    multilabel_confusion_matrix,
    precision_score,
    recall_score,
    roc_auc_score,
)
from sklearn.preprocessing import LabelBinarizer, label_binarize

from nannyml._typing import ProblemType, class_labels, model_output_column_names
from nannyml.base import _list_missing
from nannyml.exceptions import InvalidArgumentsException
from nannyml.performance_calculation.metrics.base import Metric, MetricFactory, _common_data_cleaning
from nannyml.sampling_error.multiclass_classification import (
    accuracy_sampling_error,
    accuracy_sampling_error_components,
    auroc_sampling_error,
    auroc_sampling_error_components,
    f1_sampling_error,
    f1_sampling_error_components,
    precision_sampling_error,
    precision_sampling_error_components,
    recall_sampling_error,
    recall_sampling_error_components,
    specificity_sampling_error,
    specificity_sampling_error_components,
)
from nannyml.thresholds import Threshold


[docs]@MetricFactory.register(metric='roc_auc', use_case=ProblemType.CLASSIFICATION_MULTICLASS) class MulticlassClassificationAUROC(Metric): """Area under Receiver Operating Curve metric.""" def __init__( self, y_true: str, y_pred: str, threshold: Threshold, y_pred_proba: Optional[Union[str, Dict[str, str]]] = None, **kwargs, ): """Creates a new AUROC instance. Parameters ---------- y_true: str The name of the column containing target values. y_pred: str The name of the column containing your model predictions. threshold: Threshold The Threshold instance that determines how the lower and upper threshold values will be calculated. y_pred_proba: Union[str, Dict[str, str]] Name(s) of the column(s) containing your model output. - For binary classification, pass a single string refering to the model output column. - For multiclass classification, pass a dictionary that maps a class string to the column name \ containing model outputs for that class. """ super().__init__( name='roc_auc', y_true=y_true, y_pred=y_pred, threshold=threshold, y_pred_proba=y_pred_proba, lower_threshold_limit=0, upper_threshold_limit=1, components=[("ROC AUC", "roc_auc")], ) # FIXME: Should we check the y_pred_proba argument here to ensure it's a dict? self.y_pred_proba: Dict[str, str] # sampling error self._sampling_error_components: List[Tuple] = [] def __str__(self): return "roc_auc" def _fit(self, reference_data: pd.DataFrame): _list_missing([self.y_true, self.y_pred], list(reference_data.columns)) # sampling error classes = class_labels(self.y_pred_proba) binarized_y_true = list(label_binarize(reference_data[self.y_true], classes=classes).T) y_pred_proba = [reference_data[self.y_pred_proba[clazz]].T for clazz in classes] self._sampling_error_components = auroc_sampling_error_components( y_true_reference=binarized_y_true, y_pred_proba_reference=y_pred_proba ) def _calculate(self, data: pd.DataFrame): if not isinstance(self.y_pred_proba, Dict): raise InvalidArgumentsException( f"'y_pred_proba' is of type {type(self.y_pred_proba)}\n" f"multiclass use cases require 'y_pred_proba' to " "be a dictionary mapping classes to columns." ) _list_missing([self.y_true] + model_output_column_names(self.y_pred_proba), data) labels, class_probability_columns = [], [] for label in sorted(list(self.y_pred_proba.keys())): labels.append(label) class_probability_columns.append(self.y_pred_proba[label]) y_true = data[self.y_true] y_pred = data[class_probability_columns] if y_pred.isna().all().any(): raise InvalidArgumentsException( f"could not calculate metric {self.display_name}: " "prediction column contains no data" ) y_true, y_pred = _common_data_cleaning(y_true, y_pred) if y_true.nunique() <= 1: return np.nan else: return roc_auc_score(y_true, y_pred, multi_class='ovr', average='macro', labels=labels) def _sampling_error(self, data: pd.DataFrame) -> float: return auroc_sampling_error(self._sampling_error_components, data)
[docs]@MetricFactory.register(metric='f1', use_case=ProblemType.CLASSIFICATION_MULTICLASS) class MulticlassClassificationF1(Metric): """F1 score metric.""" def __init__( self, y_true: str, y_pred: str, threshold: Threshold, y_pred_proba: Optional[Union[str, Dict[str, str]]] = None, **kwargs, ): """Creates a new F1 instance. Parameters ---------- y_true: str The name of the column containing target values. y_pred: str The name of the column containing your model predictions. threshold: Threshold The Threshold instance that determines how the lower and upper threshold values will be calculated. y_pred_proba: Union[str, Dict[str, str]] Name(s) of the column(s) containing your model output. - For binary classification, pass a single string refering to the model output column. - For multiclass classification, pass a dictionary that maps a class string to the column name \ containing model outputs for that class. """ super().__init__( name='f1', y_true=y_true, y_pred=y_pred, threshold=threshold, y_pred_proba=y_pred_proba, lower_threshold_limit=0, upper_threshold_limit=1, components=[("F1", "f1")], ) # sampling error self._sampling_error_components: List[Tuple] = [] def __str__(self): return "f1" def _fit(self, reference_data: pd.DataFrame): _list_missing([self.y_true, self.y_pred], reference_data) # sampling error label_binarizer = LabelBinarizer() binarized_y_true = list(label_binarizer.fit_transform(reference_data[self.y_true]).T) binarized_y_pred = list(label_binarizer.transform(reference_data[self.y_pred]).T) self._sampling_error_components = f1_sampling_error_components( y_true_reference=binarized_y_true, y_pred_reference=binarized_y_pred ) def _calculate(self, data: pd.DataFrame): if not isinstance(self.y_pred_proba, Dict): raise InvalidArgumentsException( f"'y_pred_proba' is of type {type(self.y_pred_proba)}\n" f"multiclass use cases require 'y_pred_proba' to " "be a dictionary mapping classes to columns." ) _list_missing([self.y_true, self.y_pred], data) labels = sorted(list(self.y_pred_proba.keys())) y_true = data[self.y_true] y_pred = data[self.y_pred] if y_pred.isna().all().any(): raise InvalidArgumentsException( f"could not calculate metric {self.display_name}: " "prediction column contains no data" ) y_true, y_pred = _common_data_cleaning(y_true, y_pred) if (y_true.nunique() <= 1) or (y_pred.nunique() <= 1): return np.nan else: return f1_score(y_true, y_pred, average='macro', labels=labels) def _sampling_error(self, data: pd.DataFrame) -> float: return f1_sampling_error(self._sampling_error_components, data)
[docs]@MetricFactory.register(metric='precision', use_case=ProblemType.CLASSIFICATION_MULTICLASS) class MulticlassClassificationPrecision(Metric): """Precision metric.""" def __init__( self, y_true: str, y_pred: str, threshold: Threshold, y_pred_proba: Optional[Union[str, Dict[str, str]]] = None, **kwargs, ): """Creates a new Precision instance. Parameters ---------- y_true: str The name of the column containing target values. y_pred: str The name of the column containing your model predictions. threshold: Threshold The Threshold instance that determines how the lower and upper threshold values will be calculated. y_pred_proba: Union[str, Dict[str, str]] Name(s) of the column(s) containing your model output. - For binary classification, pass a single string refering to the model output column. - For multiclass classification, pass a dictionary that maps a class string to the column name \ containing model outputs for that class. """ super().__init__( name='precision', y_true=y_true, y_pred=y_pred, threshold=threshold, y_pred_proba=y_pred_proba, lower_threshold_limit=0, upper_threshold_limit=1, components=[("Precision", "precision")], ) # sampling error self._sampling_error_components: List[Tuple] = [] def __str__(self): return "precision" def _fit(self, reference_data: pd.DataFrame): _list_missing([self.y_true, self.y_pred], reference_data) # sampling error label_binarizer = LabelBinarizer() binarized_y_true = list(label_binarizer.fit_transform(reference_data[self.y_true]).T) binarized_y_pred = list(label_binarizer.transform(reference_data[self.y_pred]).T) self._sampling_error_components = precision_sampling_error_components( y_true_reference=binarized_y_true, y_pred_reference=binarized_y_pred ) def _calculate(self, data: pd.DataFrame): if not isinstance(self.y_pred_proba, Dict): raise InvalidArgumentsException( f"'y_pred_proba' is of type {type(self.y_pred_proba)}\n" f"multiclass use cases require 'y_pred_proba' to " "be a dictionary mapping classes to columns." ) _list_missing([self.y_true, self.y_pred], data) labels = sorted(list(self.y_pred_proba.keys())) y_true = data[self.y_true] y_pred = data[self.y_pred] if y_pred.isna().all().any(): raise InvalidArgumentsException( f"could not calculate metric {self.display_name}: " "prediction column contains no data" ) y_true, y_pred = _common_data_cleaning(y_true, y_pred) if (y_true.nunique() <= 1) or (y_pred.nunique() <= 1): return np.nan else: return precision_score(y_true, y_pred, average='macro', labels=labels) def _sampling_error(self, data: pd.DataFrame) -> float: return precision_sampling_error(self._sampling_error_components, data)
[docs]@MetricFactory.register(metric='recall', use_case=ProblemType.CLASSIFICATION_MULTICLASS) class MulticlassClassificationRecall(Metric): """Recall metric, also known as 'sensitivity'.""" def __init__( self, y_true: str, y_pred: str, threshold: Threshold, y_pred_proba: Optional[Union[str, Dict[str, str]]] = None, **kwargs, ): """Creates a new Recall instance. Parameters ---------- y_true: str The name of the column containing target values. y_pred: str The name of the column containing your model predictions. threshold: Threshold The Threshold instance that determines how the lower and upper threshold values will be calculated. y_pred_proba: Union[str, Dict[str, str]] Name(s) of the column(s) containing your model output. - For binary classification, pass a single string refering to the model output column. - For multiclass classification, pass a dictionary that maps a class string to the column name \ containing model outputs for that class. """ super().__init__( name='recall', y_true=y_true, y_pred=y_pred, threshold=threshold, y_pred_proba=y_pred_proba, lower_threshold_limit=0, upper_threshold_limit=1, components=[("Recall", "recall")], ) # sampling error self._sampling_error_components: List[Tuple] = [] def __str__(self): return "recall" def _fit(self, reference_data: pd.DataFrame): _list_missing([self.y_true, self.y_pred], reference_data) # sampling error label_binarizer = LabelBinarizer() binarized_y_true = list(label_binarizer.fit_transform(reference_data[self.y_true]).T) binarized_y_pred = list(label_binarizer.transform(reference_data[self.y_pred]).T) self._sampling_error_components = recall_sampling_error_components( y_true_reference=binarized_y_true, y_pred_reference=binarized_y_pred ) def _calculate(self, data: pd.DataFrame): if not isinstance(self.y_pred_proba, Dict): raise InvalidArgumentsException( f"'y_pred_proba' is of type {type(self.y_pred_proba)}\n" f"multiclass use cases require 'y_pred_proba' to " "be a dictionary mapping classes to columns." ) _list_missing([self.y_true, self.y_pred], data) labels = sorted(list(self.y_pred_proba.keys())) y_true = data[self.y_true] y_pred = data[self.y_pred] if y_pred.isna().all().any(): raise InvalidArgumentsException( f"could not calculate metric {self.display_name}: " "prediction column contains no data" ) y_true, y_pred = _common_data_cleaning(y_true, y_pred) if (y_true.nunique() <= 1) or (y_pred.nunique() <= 1): return np.nan else: return recall_score(y_true, y_pred, average='macro', labels=labels) def _sampling_error(self, data: pd.DataFrame) -> float: return recall_sampling_error(self._sampling_error_components, data)
[docs]@MetricFactory.register(metric='specificity', use_case=ProblemType.CLASSIFICATION_MULTICLASS) class MulticlassClassificationSpecificity(Metric): """Specificity metric.""" def __init__( self, y_true: str, y_pred: str, threshold: Threshold, y_pred_proba: Optional[Union[str, Dict[str, str]]] = None, **kwargs, ): """Creates a new Specificity instance. Parameters ---------- y_true: str The name of the column containing target values. y_pred: str The name of the column containing your model predictions. threshold: Threshold The Threshold instance that determines how the lower and upper threshold values will be calculated. y_pred_proba: Union[str, Dict[str, str]] Name(s) of the column(s) containing your model output. - For binary classification, pass a single string refering to the model output column. - For multiclass classification, pass a dictionary that maps a class string to the column name \ containing model outputs for that class. """ super().__init__( name='specificity', y_true=y_true, y_pred=y_pred, threshold=threshold, y_pred_proba=y_pred_proba, lower_threshold_limit=0, upper_threshold_limit=1, components=[("Specificity", "specificity")], ) # sampling error self._sampling_error_components: List[Tuple] = [] def __str__(self): return "specificity" def _fit(self, reference_data: pd.DataFrame): _list_missing([self.y_true, self.y_pred], reference_data) # sampling error label_binarizer = LabelBinarizer() binarized_y_true = list(label_binarizer.fit_transform(reference_data[self.y_true]).T) binarized_y_pred = list(label_binarizer.transform(reference_data[self.y_pred]).T) self._sampling_error_components = specificity_sampling_error_components( y_true_reference=binarized_y_true, y_pred_reference=binarized_y_pred ) def _calculate(self, data: pd.DataFrame): if not isinstance(self.y_pred_proba, Dict): raise InvalidArgumentsException( f"'y_pred_proba' is of type {type(self.y_pred_proba)}\n" f"multiclass use cases require 'y_pred_proba' to " "be a dictionary mapping classes to columns." ) _list_missing([self.y_true, self.y_pred], data) labels = sorted(list(self.y_pred_proba.keys())) y_true = data[self.y_true] y_pred = data[self.y_pred] if y_pred.isna().all().any(): raise InvalidArgumentsException( f"could not calculate metric {self.display_name}: prediction column contains no data" ) y_true, y_pred = _common_data_cleaning(y_true, y_pred) if (y_true.nunique() <= 1) or (y_pred.nunique() <= 1): return np.nan else: MCM = multilabel_confusion_matrix(y_true, y_pred, labels=labels) tn_sum = MCM[:, 0, 0] fp_sum = MCM[:, 0, 1] class_wise_specificity = tn_sum / (tn_sum + fp_sum) return np.mean(class_wise_specificity) def _sampling_error(self, data: pd.DataFrame) -> float: return specificity_sampling_error(self._sampling_error_components, data)
[docs]@MetricFactory.register(metric='accuracy', use_case=ProblemType.CLASSIFICATION_MULTICLASS) class MulticlassClassificationAccuracy(Metric): """Accuracy metric.""" def __init__( self, y_true: str, y_pred: str, threshold: Threshold, y_pred_proba: Optional[Union[str, Dict[str, str]]] = None, **kwargs, ): """Creates a new Accuracy instance. Parameters ---------- y_true: str The name of the column containing target values. y_pred: str The name of the column containing your model predictions. threshold: Threshold The Threshold instance that determines how the lower and upper threshold values will be calculated. y_pred_proba: Union[str, Dict[str, str]] Name(s) of the column(s) containing your model output. - For binary classification, pass a single string refering to the model output column. - For multiclass classification, pass a dictionary that maps a class string to the column name \ containing model outputs for that class. """ super().__init__( name='accuracy', y_true=y_true, y_pred=y_pred, threshold=threshold, y_pred_proba=y_pred_proba, lower_threshold_limit=0, upper_threshold_limit=1, components=[("Accuracy", "accuracy")], ) # sampling error self._sampling_error_components: Tuple = () def __str__(self): return "accuracy" def _fit(self, reference_data: pd.DataFrame): _list_missing([self.y_true, self.y_pred], reference_data) # sampling error label_binarizer = LabelBinarizer() binarized_y_true = label_binarizer.fit_transform(reference_data[self.y_true]) binarized_y_pred = label_binarizer.transform(reference_data[self.y_pred]) self._sampling_error_components = accuracy_sampling_error_components( y_true_reference=binarized_y_true, y_pred_reference=binarized_y_pred ) def _calculate(self, data: pd.DataFrame): _list_missing([self.y_true, self.y_pred], data) y_true = data[self.y_true] y_pred = data[self.y_pred] if y_pred.isna().all().any(): raise InvalidArgumentsException( f"could not calculate metric '{self.display_name}': " "prediction column contains no data" ) y_true, y_pred = _common_data_cleaning(y_true, y_pred) if (y_true.nunique() <= 1) or (y_pred.nunique() <= 1): return np.nan else: return accuracy_score(y_true, y_pred) def _sampling_error(self, data: pd.DataFrame) -> float: return accuracy_sampling_error(self._sampling_error_components, data)