nannyml.performance_calculation.metrics.regression module
Performance Calculation Regression Metrics Module.
- class nannyml.performance_calculation.metrics.regression.MAE(y_true: str, y_pred: str, threshold: Threshold, y_pred_proba: Optional[str] = None, **kwargs)[source]
Bases:
Metric
Mean Absolute Error metric.
Creates a new MAE instance.
- Parameters:
y_true (str) – The name of the column containing target values.
y_pred (str) – The name of the column containing your model predictions.
threshold (Threshold) – The Threshold instance that determines how the lower and upper threshold values will be calculated.
y_pred_proba (Optional[str], default=None) – Name of the column containing your model output.
- y_pred: str
- class nannyml.performance_calculation.metrics.regression.MAPE(y_true: str, y_pred: str, threshold: Threshold, y_pred_proba: Optional[str] = None, **kwargs)[source]
Bases:
Metric
Mean Absolute Percentage Error metric.
Creates a new MAPE instance.
- Parameters:
y_true (str) – The name of the column containing target values.
y_pred (str) – The name of the column containing your model predictions.
threshold (Threshold) – The Threshold instance that determines how the lower and upper threshold values will be calculated.
y_pred_proba (Optional[str], default=None) – Name of the column containing your model output.
- y_pred: str
- class nannyml.performance_calculation.metrics.regression.MSE(y_true: str, y_pred: str, threshold: Threshold, y_pred_proba: Optional[str] = None, **kwargs)[source]
Bases:
Metric
Mean Squared Error metric.
Creates a new MSE instance.
- Parameters:
y_true (str) – The name of the column containing target values.
y_pred (str) – The name of the column containing your model predictions.
threshold (Threshold) – The Threshold instance that determines how the lower and upper threshold values will be calculated.
y_pred_proba (Optional[str], default=None) – Name of the column containing your model output.
- y_pred: str
- class nannyml.performance_calculation.metrics.regression.MSLE(y_true: str, y_pred: str, threshold: Threshold, y_pred_proba: Optional[str] = None, **kwargs)[source]
Bases:
Metric
Mean Squared Logarithmic Error metric.
Creates a new MSLE instance.
- Parameters:
y_true (str) – The name of the column containing target values.
y_pred (str) – The name of the column containing your model predictions.
threshold (Threshold) – The Threshold instance that determines how the lower and upper threshold values will be calculated.
y_pred_proba (Optional[str], default=None) – Name of the column containing your model output.
- y_pred: str
- class nannyml.performance_calculation.metrics.regression.RMSE(y_true: str, y_pred: str, threshold: Threshold, y_pred_proba: Optional[str] = None, **kwargs)[source]
Bases:
Metric
Root Mean Squared Error metric.
Creates a new RMSE instance.
- Parameters:
y_true (str) – The name of the column containing target values.
y_pred (str) – The name of the column containing your model predictions.
threshold (Threshold) – The Threshold instance that determines how the lower and upper threshold values will be calculated.
y_pred_proba (Optional[str], default=None) – Name of the column containing your model output.
- y_pred: str
- class nannyml.performance_calculation.metrics.regression.RMSLE(y_true: str, y_pred: str, threshold: Threshold, y_pred_proba: Optional[str] = None, **kwargs)[source]
Bases:
Metric
Root Mean Squared Logarithmic Error metric.
Creates a new RMSLE instance.
- Parameters:
y_true (str) – The name of the column containing target values.
y_pred (str) – The name of the column containing your model predictions.
threshold (Threshold) – The Threshold instance that determines how the lower and upper threshold values will be calculated.
y_pred_proba (Optional[str], default=None) – Name of the column containing your model output.
- y_pred: str