nannyml.stats.count.calculator module
Simple Statistics Average Calculator.
- class nannyml.stats.count.calculator.SummaryStatsRowCountCalculator(timestamp_column_name: ~typing.Optional[str] = None, chunk_size: ~typing.Optional[int] = None, chunk_number: ~typing.Optional[int] = None, chunk_period: ~typing.Optional[str] = None, chunker: ~typing.Optional[~nannyml.chunk.Chunker] = None, threshold: ~nannyml.thresholds.Threshold = StandardDeviationThreshold{'std_lower_multiplier': 3, 'std_upper_multiplier': 3, 'offset_from': <function nanmean>})[source]
Bases:
AbstractCalculator
SummaryStatsRowCountCalculator implementation.
Creates a new SummaryStatsRowCountCalculator instance.
- Parameters:
timestamp_column_name (str) – The name of the column containing the timestamp of the model prediction.
chunk_size (int) – Splits the data into chunks containing chunks_size observations. Only one of chunk_size, chunk_number or chunk_period should be given.
chunk_number (int) – Splits the data into chunk_number pieces. Only one of chunk_size, chunk_number or chunk_period should be given.
chunk_period (str) – Splits the data according to the given period. Only one of chunk_size, chunk_number or chunk_period should be given.
chunker (Chunker) – The Chunker used to split the data sets into a lists of chunks.
threshold (Appropriate Threshold subclass.) – Defines alert thresholds strategy. Defaults to StandardDeviationThreshold()
Examples
>>> import nannyml as nml >>> reference, analysis, _ = nml.load_synthetic_car_price_dataset() >>> calc = nml.SummaryStatsRowCountCalculator( ... timestamp_column_name='timestamp', ... ).fit(reference) >>> res = calc.calculate(analysis) >>> res.plot().show()